Afferent projections from motoneurons innervating extraocular muscles to the cerebellum demonstrated by the retrograde double-labeling technique.
نویسندگان
چکیده
The objective of this study was to investigate the characteristics and distributions of neuronal origin of cerebellar afferents from motor cranial nerve nuclei innervating extraocular muscles by the method of retrograde transport of two fluorescence tracers in rats. Under deep anesthesia and aseptic conditions, 5 microl of 3% solution of Fluoro-Gold (FG) in phosphate buffer solution (PBS) was injected into the bellies of the six extraocular muscles to study the labeling of motoneurons innervating corresponding extraocular muscles. The cerebellum was exposed by craniotomy, and 0.3 microl of 10% solution of Dextran Tetramethyl Rhodamine Biotin (Micro Ruby: or MR) in PBS was injected into many regions of the anterior vermis (lobule I, II) and the posterior vermis (lobule VI, VII, IX, X), the flocculus, the paraflocculus and the deep cerebellar nuclei. Multiple injections were made to cover the entire cerebellum in order to obtain a near maximum labeling of cerebellar afferent neurons. In other cases, only small single or a few injections were made in specific areas of the cerebellum to study specific distributions and topographic organization. In one group of rats, injections were made both in the extraocular muscles with FG and in the cerebellum with MR to study the double labeling of neurons, which project their axons to both the extraocular muscle and the cerebellum. Another group of rats were injected in both sites with only PBS and served as the control for auto-fluorescence background. After 3 days postoperative survival time, all animals were deeply reanesthetized and perfused with heparinized normal saline solution, followed by 4% paraformaldehyde in 0.1 M phosphate buffer, pH 7.4, and 30% sucrose solution in PBS. The brainstem and the cerebellum were removed immediately, and stored in sucrose solution in PBS at 4 degrees C. Serial transverse sections of the brainstem and sagittal sections of the cerebellum were obtained by a freezing microtome at 40 microm thickness, collected on uncoated glass slides, and immediately dried. All sections were examined under an epifluorescence or confocal microscope equipped with filter systems for FG and MR. The presence of both single and double retrograde labeled neurons in the Oculomotor (CN 3), Trochlear (CN 4) and Abducens (CN 6) nuclei was recorded, photographed, stored as computer images files and printed out as hard copies. The labeling neurons in the vicinity of the CN 3, 4, 6 from all sections were plotted onto diagrams and counted Neurons labeled only with MR retrogradely transported from injection sites in the cerebellum were found bilaterally and scattered throughout in the Oculomotor, Trochlear and Abducens nuclei. These neurons labeled only with MR were small and medium-sized interneurons and represented only a small proportion of the entire population. Neurons labeled only with FG retrogradely transported from injection sites in the extraocular muscles were the most numerous, and distributed almost throughout the entire population of small, medium-sized and large motoneurons, which innervate the extraocular muscles. A smaller proportion of small and medium-sized FG labeled neurons within these nuclei were also double labeled with MR, indicating that they project their axon collaterals to both extraocular muscles and the cerebellum. In conclusion, the present findings provide clear anatomical evidence that a small population of motoneurons in the Oculomotor, Trochlear and Abducens nuclei of the rat project their axon collaterals directly to the cerebellum and the extraocular muscle, in addition to the cerebellar afferents from other interneurons within these nuclei. The findings also indicate that cerebellar neuronal circuits play more direct roles in monitoring and controlling eye movements than previously known.
منابع مشابه
Selective reinnervation of transplanted muscles by their original motoneurons in the axolotl.
The motoneurons innervating 3 hindlimb extensor muscles, anterior and posterior iliotibialis and iliofibularis, were studied separately by retrograde labeling with HRP. The motor pools for these 3 muscles overlapped to such an extent that individual motoneurons between ventral roots 16 and 17 could not be assigned unambiguously to one pool or another. Thus, conventional retrograde labeling coul...
متن کاملCerebellar afferents from neurons in the extraocular motor nuclei: a fluorescent retrograde double-labeling study in the sheep.
The fluorescent retrograde double labeling technique has been used to identify within the extraocular motor nuclei of the sheep the neurons projecting to the cerebellum and to provide evidence whether they are motor neurons sending collaterals to the cerebellum or a separate population of neurons. The study was performed on eight sheep. The fluorescent tracers used were Fast Blue and the diamid...
متن کاملOrganization of hindlimb muscle afferent projections to lumbosacral motoneurons in the chick embryo.
We have examined the organization of muscle afferent projections to motoneurons in the lumbosacral spinal cord of chick embryos between stage 37, when muscle afferents first reach the motor nucleus, and stage 44, which is just before hatching. Connectivity between afferents and motoneurons was assessed by stimulating individual muscle nerves and recording the resulting motoneuron synaptic poten...
متن کاملEvidence for glycine as an inhibitory neurotransmitter of vestibular, reticular, and prepositus hypoglossi neurons that project to the cat abducens nucleus.
The localization and distribution of brain-stem afferent neurons to the cat abducens nucleus has been examined by high-affinity uptake and retrograde transport of 3H-glycine. Injections of 3H-glycine selectively labeled (by autoradiography) only neurons located predominantly in the ipsilateral medial vestibular and contralateral prepositus hypoglossi nuclei, and in the contralateral dorsomedial...
متن کاملPrinciples of motor organization of the monkey cervical spinal cord.
The organization of spinal cord motor columns innervating 18 selected macaque forelimb muscles was studied with the technique of retrograde transport of horseradish peroxidase. The reliability of the method was evaluated in the cat hindlimb. Motor columns innervating forearm muscles with similar actions on the hand appear to overlap in the anterior horn. Extensor motoneurons are generally posit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the Medical Association of Thailand = Chotmaihet thangphaet
دوره 88 12 شماره
صفحات -
تاریخ انتشار 2005